Unusual Tetragonality in Dibromotetrapyrazolenickel(II)

By Curt W. Reimann
(Institute for Materials Research, National Bureau of Standards, Washington, D.C. 20234)

In the visible spectrum of $\mathrm{Ni}_{\mathrm{Py}}^{4} \mathrm{Br}_{2}$ ($\mathrm{py}=$ pyridine), the two lowest energy bands are separated by $c a .3000 \mathrm{~cm} .^{-1.1}$ Although this separation indicates a substantial tetragonal distortion from the octahedral field present in the parent $\mathrm{Ni} \mathrm{py}_{6}{ }^{2+}$ species, Rowley and Drago further showed that the magnitude of the observed tetragonal splitting is consistent with that computed by using typical spectrochemical series values of the ligand-field strength parameters, L q, for pyridine and for the bromide ion. We have determined the structures of the two pyrazole (pz) complexes, $\mathrm{Ni} \mathrm{pz} \mathbf{z}_{6}\left(\mathrm{NO}_{3}\right)_{2}\left(R 0.053\right.$ for 1115 reflections), ${ }^{2}$ and $\mathrm{Ni} \mathrm{pz}_{4} \mathrm{Br}_{2}\left(R \quad 0.081\right.$ for 2104 reflections). ${ }^{3}$ The bromide complex is a trans-substituted species of the octahedral $\mathrm{Ni} \mathrm{pz}_{6}{ }^{2+}$ cation which is shown to be present in the structure of $\mathrm{Ni} \mathrm{pz}_{6}\left(\mathrm{NO}_{3}\right)_{2}$. Therefore, the spectra of these pyrazole complexes can be compared with those of the analogous pyridine complexes. As expected, the crystal spectrum of $\mathrm{Ni} \mathrm{pz}_{6}\left(\mathrm{NO}_{3}\right)_{2}$ is similar to that of $\mathrm{Ni} \mathrm{py}_{6}{ }^{2+}$, hence $D q-$ (pyrazole) and $D q$ (pyridine) are similar. However, the tetragonal splitting between the first two bands in the spectrum of $\mathrm{Ni}_{\mathrm{pz}}^{4} \mathrm{Br}_{2}$ is found to be $c a .1000 \mathrm{~cm} .^{-1}$ larger than the corresponding splitting observed in the spectrum of $\mathrm{Ni} \mathrm{py} 4_{4} \mathrm{Br}_{2}$. The field due to the bromide ion therefore assumes two very different values in two closely related complexes: ca. $600 \mathrm{~cm} .^{-1}$ in Ni $\mathrm{py}_{4} \mathrm{Br}_{2}$ but only ca. 350
$\mathrm{cm} .^{-1}$ in $\mathrm{Ni} \mathrm{pz}_{4} \mathrm{Br}_{2}$. As $D q(\mathrm{Br})$ ca. $600 \mathrm{~cm} .^{-1}$ represents the spectrochemical series value, ${ }^{4}$ the unusually small $D q(\mathrm{Br})$ observed in $\mathrm{Ni}_{\mathrm{pz}}^{4} \mathrm{Br}_{2}$ must be interpreted in terms of specific properties of this complex.

Several structure determinations have established that ligands which contain both \rangle_{N} and $\rangle \mathrm{N}-\mathrm{H}$ groups may utilize them in co-ordinate $(\lambda \mathrm{N})$ and hydrogen ($/ \mathrm{N}-\mathrm{H}$) bonds. In pyrazole these bonding groups are adjacent and the hydrogen bonds may be directed toward atoms either outside or inside the co-ordination sphere. External utilization occurs in the structure of $\mathrm{Ni} \mathrm{pz}_{6}\left(\mathrm{NO}_{3}\right)_{2}$ which consists of $\mathrm{Ni} \mathrm{pz}_{6}{ }^{2+}$ cations linked to adjacent NO_{3} anions by six $\mathrm{N}-\mathrm{H} \ldots \mathrm{O}$ hydrogen bonds of $2 \cdot 87 \AA$. The coordination about the nickel ion comprises six $/ \mathrm{N}$ atoms in a nearly regular octahedral configuration. This co-ordination accounts for the regular octahedral band pattern observed in the visible spectrum of $\mathrm{Ni} \mathrm{pz}_{6}\left(\mathrm{NO}_{3}\right)_{2}$. Internal utilization of $/ \mathrm{N}-\mathrm{N}^{\prime} / \mathrm{H}$ is found in the structure of $\mathrm{Ni} \mathrm{pz}_{4} \mathrm{Br}_{2}$ which consists of linear $\mathrm{Br}-\mathrm{Ni}-\mathrm{Br}$ groups with four planar pyrazole molecules aligned with the $\mathrm{Br}-\mathrm{Ni}-\mathrm{Br}$ direction. In this orientation the $\mathrm{N}-\mathrm{H}$ group, the coordinating nitrogen atom and the $\mathrm{Ni}-\mathrm{Br}$ group lie in one
plane to within 2°. This configuration (I) permits the $\mathrm{N}-\mathrm{H}$ group to point approximately toward the bromide ion.

In the closely related complex, $\mathrm{Ni} \mathrm{py}_{4} \mathrm{Br}_{2},{ }^{5}$ the pyridine rings are inclined $c a .45^{\circ}$ away from the $\mathrm{Br}-\mathrm{Ni}-\mathrm{Br}$ direction, the $\mathrm{Ni}-\mathrm{Br}$ distance is shorter $(2 \cdot 58 \AA)$ and the field of the bromide ion is normal. Thus, the available structural evidence indicates that the hydrogen bond interaction between the bromide ions and pyrazole molecules results in a reduction in the effective field of the bromide ion. An entirely analogous structural and spectroscopic behaviour is noted in the corresponding chloride complexes.

I thank Dr. A. D. Mighell and Dr. A. Santoro for valuable discussions.
(Received, November 7th, 1968; Com. 1517.)
${ }^{1}$ D. A. Rowley and R. S. Drago, Inorg. Chem., 1966, 6, 1092.
${ }^{2}$ C. W. Reimann, A. Santoro, and A. D. Mighell, Acta Cryst., submitted for publication.
${ }^{3}$ A. D. Mighell, C. W. Reimann and A. Santoro, Acta Cryst., in the press.
${ }^{4}$ B. N. Figgis, "Introduction to Ligand Fields," Interscience, New York, 1966, p. 242.
${ }^{5}$ A. S. Antsishkina and M. A. Porai-Koshits, Kristallografiya, 1958, 3, 684.

